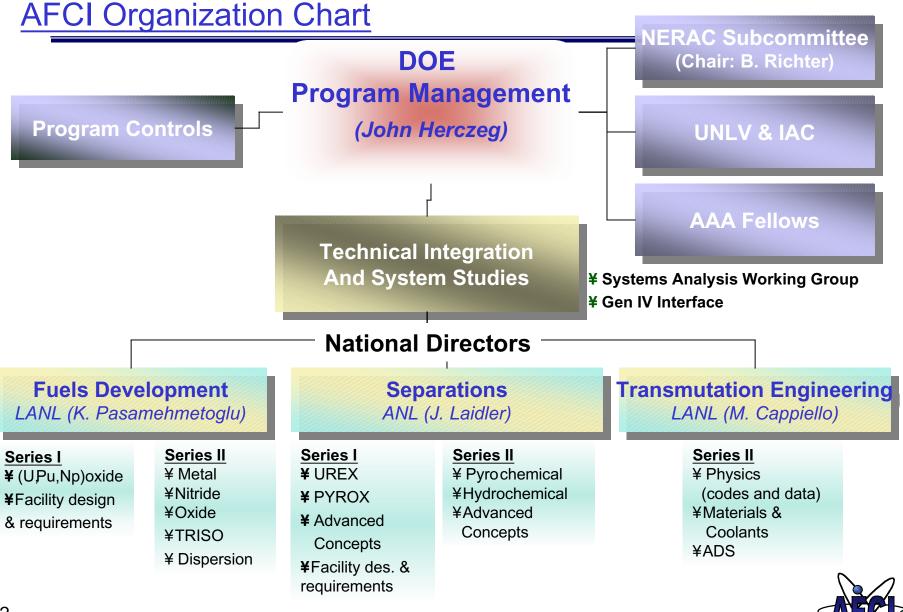


Advanced Fuel Cycle Initiative (AFCI) Five Year Program Plan


Kemal O. Pasamehmetoglu

AFC Fuels Development

National Technical Director

Los Alamos National Laboratory

The Fuel Development Program Addresses Both Series One and Two Fuels Needs for the AFCI

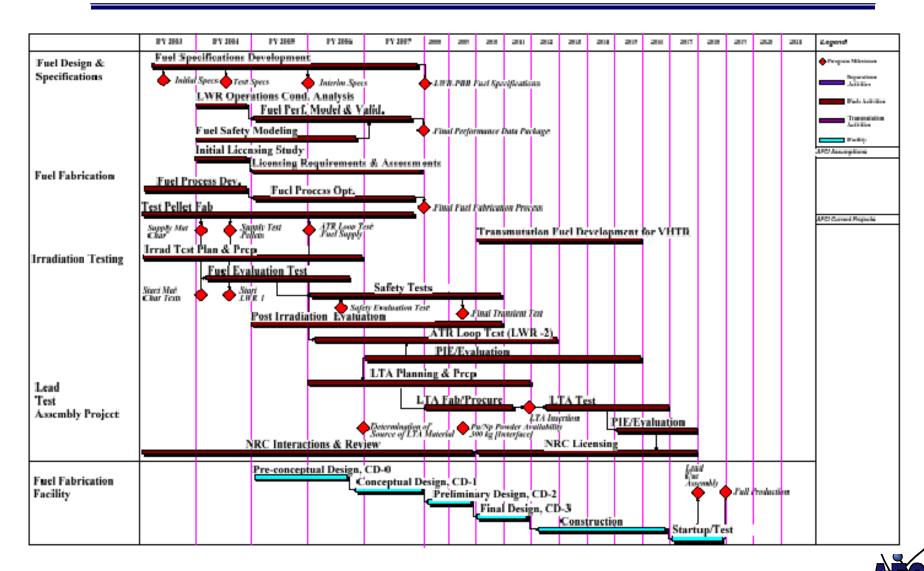
Fuel Development Program Supports the Short-term and Long-term Goals and Objectives of the AFCI

- Develop proliferation-resistant Pu U
 oxide fuels that can be used in existing
 LWRs and ALWRs soon after 2015
- **¥** By FY2007, complete
 - Fuel fabrication process definition
 - Fuel specifications
 - Performance data-package

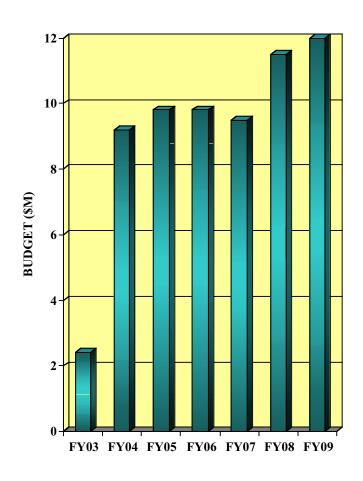
by

- Irradiation testing
- Analyses
- Comparison to MOX data-base
- International collaborations

- **Y** Develop Pu MA -U? bearing fuels that can be used in existing fast spectrum transmutation systems to be deployed ~ 2030
- By FY2007, determine feasible fuel options consistent with selected transmutation implementation scenario, by
 - Irradiation testing
 - Analyses
 - International collaborations
- **By 2010, select final fuel form for the decided implementation scenario**



SERIES ONE FUEL DEVELOPMENT


Proliferation-resistant Plutonium-Uranium Oxide fuels for LWRs and ALWRs

Top-level Deployment Schedule is Driven by Series One Fuel Development

Five-Year Budget is Estimated to Achieve the Series One Deployment Objectives

In addition to fuel fabrication and ATR testing, the budget contains the following:

- Pre-conceptual and conceptual design for the fuel fabrication facility
- LTA planning and preparation
- International collaboration to assess the MOX databases and Np bearing fuel testing
- HFIR tests if additional testing is needed
- Use of ACRR or TREAT for transient safety testing

There are a Number of Critical Issues That Must be Addressed During Series One Implementation

Y Schedule is very aggressive and success oriented

- Early definition of proliferation resistant fuel
- Early involvement of industry and NRC
- Early definition of licensing requirements

Y Irradiation test facilities exist

- Aggressive test and PIE scheduling requires timely availability of facilities
- **¥** If NRC requires detailed transient testing, TREAT or another transient test facility could be restarted.
- **Y** A fuel composition close to standard MOX will accelerate development
 - Early assessment of International MOX database in comparison with the Series One proliferation resistant fuel composition

SERIES TWO FUEL DEVELOPMENT

MA bearing transmutation fuels to be used in fast-spectrum transmuters (ADS, GEN IV)
Advanced high-burnup fuels for GEN IV reactors

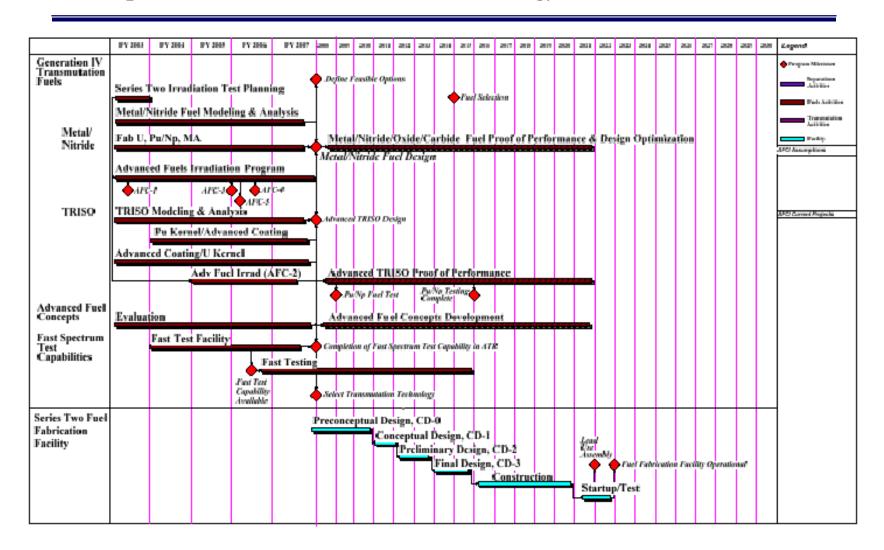
Fertile-free fuel

**Fast reactors with inhomogeneous core

TRU-Rich fuel

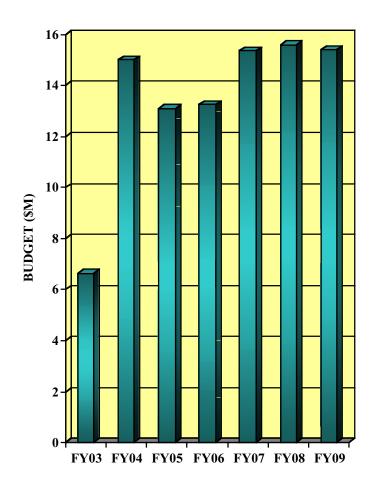
*Fast reactors with
low conversion ratio

Fertile-rich fuel


* high-burnup

equilibrium fuel cycle

(GEN-IV)



Top-Level Deployment Schedule is Driven by Series Two Implementation Scenario and Technology Selection Decisions

Five-Year Budget is Estimated to Achieve the Series Two Research Objectives and Data for Selection Studies

- **Fabrication and testing of nitride,** metallic, TRISO and one selected form of dispersion fuel for 5-6 years.
- **Y** Development of a fast-flux irradiation test facility in ATR.
 - LANSCE facility is not in this budget
- **TRISO** fuel development could be supported by multiple programs.
- Y Specific GEN IV fuel development is not included in this estimate, at this time.

Series One and Two Fuel Research Effort will be Coordinated Through a Multi-Institutional Working Group

Series Two
Fuel Development
Working Group

¥LANL, ANL, ORNL,
INEEL, GA, WSRC
¥Other labs and universities as needed
¥Early NRC involvment for Series One

**Process QA
**Fuel modeling
**Review of test results
**International collaboration

Separations:

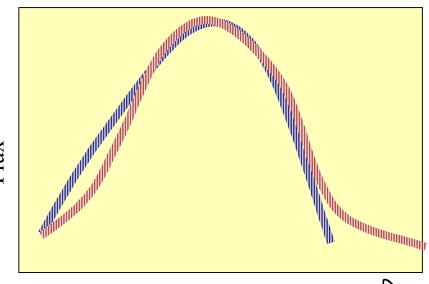
Compatibility with Series One and Two fuels requirements

Systems:

¥Licensability studies ¥Implementation scenarios ¥Proliferation requirements ¥Core design studies

Transmutation:

¥Core physics data needs ¥Coolant compatibility


Series Two Fuel Research will Continue in the Next Five Years and Prepare Data for Selection Studies

- **¥** Longer development time needed because fuels containing MA have not been developed before
- **Y** Strong International collaboration is essential in developing an adequate data-base for selection studies
- **Y** Major issue is the availability of a domestic fast-flux irradiation capability to test high-burnup fuels
- **Y** Fuel compositions of interest are very strongly dependent on the implementation scenarios, especially the outcome of the front end Series One scenario
- **A stronger integration with GEN IV fuel needs will be achieved early in the AFCI program (mostly in FY 2003)**

Modeling is expected to provide input to selection studies

- **Testing and PIE of multiple forms of high-burnup fuels is expensive**
 - A comprehensive selection based on testing only is not feasible during the early phases of the research.
 - Facilities are limited (specifically fast spectrum test facilities)
 - Difficult to perform prototypic tests (flux & spectrum effects)
- **Even though modeling may not be predictive, fidelity of comparative studies will be very valuable.**
- **Y** Modeling must focus on both fabrication and performance.
- **¥** For ADS, the effect of high-energy tail in neutron spectrum must be addressed for both the fuel and the clad performance

Energy

